martes, 25 de mayo de 2010



Medidores de nivel de líquidos

Los medidores de líquidos trabajan midiendo, bien directamente la altura del líquido sobre una línea de referencia, bien la presión hidrostática, bien el desplazamiento producido por un flotador por el propio líquido contenido en el tanque, o bien aprovechando las características eléctrica del líquido.
Los primeros, instrumentos de medida directa se dividen en: sonda, cinta y plomada, nivel de cristal e instrumentos de flotador. Estos usan el principio mecánico de transmisión de movimientoentrando en contacto directo con el líquido mediante algún brazo de extensión, además operan a presión atmosférica generalmente y se puede decir que son los más simples y menos costosos. Por ello, son de gran utilidad y frecuentemente son los candidatos escogidos en la industria siempre y cuando las características del líquido y del proceso lo permitan.
Los aparatos que miden el nivel aprovechando la presión hidrostática se dividen en:
Medidor manométrico.
Medidor de membrana
Medidor tipo burbujeo
Medidor de presión diferencial de diafragma.
Estos aparatos son un poco más complejos en tanto usan el principio de que la presión en la base de un tanque contenedor de un líquido es directamente proporcional a la altura y densidad de la columna de fluido.
El empuje producido por el propio líquido lo aprovecha el medidor de desplazamiento a barra de torsión. Que consiste en un flotador parcialmente sumergido en el líquido y conectado mediante un tubo de torsión unido rígidamente al tanque.
Los instrumentos que utilizan las características eléctricas del líquido se clasifican en:
Medidor resistivo
Medidor conductivo
Medidor capacitivo
Medidor Ultrasónico
Medidor de radiación
Medidor de láser.
Todos los fluidos tienen propiedades eléctricas que los hacen distintivos, mediante dispositivos o electrodos que permiten el paso de cierta forma de onda electromagnética o flujo de partículas que al ser recogidas muestran alteraciones que permiten calcular el nivel del líquido.
TERMOMETROS INDUSTRIALES.





Medidores de caudal

Aquí encontrará medidores de caudal para la medición de la velocidad del aire y del caudal volumétrico. Según el tipo de aplicación, los medidores de caudal son fabricados como medidores de caudal de hilo caliente, medidores de caudal de aire de rueda alada o como medidores de caudal herméticos portátiles de tamaño de bolsillo. Todos ellos hacen posible medir la fuerza eólica y la velocidad de circulación del aire. Los resultados de la medición de la velocidad del aire se pueden almacenar en parte en la memoria. En total hay 25 tipos diferentes de medidores de caudal en oferta. Son ideales para mediciones rápidas y permanentes. Encontrará un aparato adecuado para cada campo, ya sea para la industria, la artesanía o como hobby (revisión de instalaciones de climatización y ventilación, controles de proceso, pero también para aficionados al deporte naútico, etc.). Igualmente, existen accesorios y certificados ISO para estos medidores (Información: Calibracion medidores de caudal). Aquí podrá encontrar una tabla con las velocidades del viento y una clasificación aproximativa.

martes, 11 de mayo de 2010

MEDIDORES DE PRESION

Medidores de presión para determinar la presión absoluta, el vacío o la presión diferencial. En nuestro surtido encontrará medidores de presión para aire y líquidos. Algunos modelos de los medidores de presión pueden ser usados para gases. Todos los aparatos están dirigidos por un microprocesador y garantizan alta precisión y fiabilidad. Su breve tiempo de respuesta y su carcasa resistente al polvo y a las salpicaduras de agua hacen de estos aparatos instrumentos idóneos para el sector industrial o para investigación y desarrollo. Existen múltiples rangos de medición (encontrará el aparato apropiado para cada aplicación). Tres de las seis series de aparatos tienen la posibilidad de transmitir los datos a un PC, portátil o a una impresora o bien una memoria interna (Información al respecto: Medidores de presión con interfaz). También existen Certificados de calibración de los medidores de presión ISO 9000 y componentes.
Tipos de Medidores de Presión
Los instrumentos para medición de presión pueden ser indicadores, registradores, transmisores y controladores, y pueden clasificarse de acuerdo a lo siguiente:

Tipo de Manómetro Rango de Operación
M. de Ionización 0.0001 a 1 x 10-3 mmHg ABS
M. de Termopar 1 x 10-3 a 0.05 mmHg
M. de Resistencia 1 x 10-3 a 1 mmHg
M. Mc. Clau 1 x 10-4 a 10 mmHg
M. de Campana Invertida 0 a 7.6 mmH2O
M. de Fuelle Abierto 13 a 230 cmH2O
M. de Cápsula 2.5 a 250 mmH2O
M. de Campana de Mercurio (LEDOUX) 0 a 5 mts H2O
M. "U" 0 a 2 Kg/cm2
M. de Fuelle Cerrado 0 a 3 Kg/cm2
M. de Espiral 0 a 300 Kg/cm2
M. de Bourdon tipo "C" 0 a 1,500 Kg/cm2
M. Medidor de esfuerzos (stren geigs) 7 a 3,500 Kg/cm2
M. Helicoidal 0 a 10,000 Kg/cm

BOMBAS HIDRAULICAS


Una bomba es una máquina hidráulica generadora que transforma la energía (generalmente energía mecánica) con la que es accionada en energía hidráulica del fluido incompresible que mueve. El fluido incompresible puede ser líquido o una mezcla de líquidos y sólidos como puede ser el hormigón antes de fraguar o la pasta de papel. Al incrementar la energía del fluido, se aumenta su presión, su velocidad o su altura, todas ellas relacionadas según el principio de Bernoulli. En general, una bomba se utiliza para incrementar la presión de un líquido añadiendo energía al sistema hidráulico, para mover el fluido de una zona de menor presión o altitud a otra de mayor presión o altitud.
Existe una ambigüedad en la utilización del término bomba, ya que generalmente es utilizado para referirse a las máquinas de fluido que transfieren energía, o bombean fluidos incompresibles, y por lo tanto no alteran la densidad de su fluido de trabajo, a diferencia de otras máquinas como lo son los compresores, cuyo campo de aplicación es la neumática y no la hidráulica. Pero también es común encontrar el término bomba para referirse a máquinas que bombean otro tipo de fluidos, así como lo son las bombas de vacío o las bombas de aire.


Válvula
Una válvula es un dispositivo mecánico con el cual se puede iniciar, detener o regular la circulación (paso) de líquidos o gases mediante una pieza movible que abre, cierra u obstruye en forma parcial uno o más orificios o conductos.
Clasificación de válvulas atendiendo a sus usos
Válvulas industriales
Válvula de asiento
Válvula de camisa
Válvula hidráulica, caso particular de válvulas industriales.
Llave o válvula de paso, caso de válvulas en instalaciones de edificios residenciales.
Válvula de alivio de presión, para casos de bloqueo o de expansión térmica.
Válvula antirretorno, usada para evitar que un fluido se mueva en sentido no deseado a lo largo de una tubería.
Válvula rotatoria, usada en los instrumentos de viento-metal.
Válvulas de corazón.
Por analogía se denominan también válvulas los dispositivos que regulan el paso de electrones en determinadas circunstancias:
Válvulas termoiónicas Las válvulas de corazón o válvulas cardíacas son tejidos del tamaño de una moneda grande, que se encuentran en los conductos de salida de las cuatro cavidades del corazón donde cumplen la finalidad de dejar pasar la sangre en la dirección correcta, evitando que ésta fluya hacia atrás. Su función es poder mantener aislado por un instante el flujo sanguíneo en alguna de las cuatro cavidades. Con las diferentes contracciones del corazón, se contraen también en una secuencia determinada las cuatro cavidades, bombeando la sangre en una dirección. Sin las válvulas, la sangre volvería a la cavidad después de la contracción, con lo cual el corazón no cumpliría su misión.

miércoles, 5 de mayo de 2010


fluidos newtonianos

Un fluido newtoniano es un fluido cuya viscosidad puede considerarse constante en el tiempo. La curva que muestra la relación entre el esfuerzo o cizalla contra su tasa de deformación es lineal y pasa por el origen, es decir, el punto [0,0]. El mejor ejemplo de este tipo de fluidos es el agua en contraposición al pegamento, la miel o los geles que son ejemplos de fluido no newtoniano.
Un buen número de fluidos comunes se comportan como fluidos newtonianos bajo condiciones normales de presión y temperatura: el aire, el agua, la gasolina, el vino y algunos aceites minerales.


fluidos no newtonianes

Un fluido no newtoniano es aquél cuya viscosidad varía con la temperatura y presión, pero no con la variación dv/dy.
Aunque el concepto de viscosidad se usa habitualmente para caracterizar un material, puede resultar inadecuado para describir el comportamiento mecánico de algunas sustancias, en concreto, los fluidos no newtonianos. Estos fluidos se pueden caracterizar mejor mediante otras propiedades reológicas, propiedades que tienen que ver con la relación entre el esfuerzo y los tensores de tensiones bajo diferentes condiciones de flujo, tales como condiciones de esfuerzo cortante oscilatorio.
Un ejemplo barato y no tóxico de fluido no newtoniano puede hacerse fácilmente añadiendo almidón de maíz en una taza de agua. Se añade el almidón en pequeñas proporciones y se revuelve lentamente. Cuando la suspensión se acerca a la concentración crítica es cuando las propiedades de este fluido no newtoniano se hacen evidentes. La aplicación de una fuerza con la cucharilla hace que el fluido se comporte de forma más parecida a un sólido que a un líquido. Si se deja en reposo recupera su comportamiento como líquido. Se investiga con este tipo de fluidos para la fabricación de chalecos antibalas, debido a su capacidad para absorber la energía del impacto de un proyectil a alta velocidad, pero permaneciendo flexibles si el impacto se produce a baja velocidad.
Un ejemplo familiar de un fluido con el comportamiento contrario es la pintura. Se desea que fluya fácilmente cuando se aplica con el pincel y se le aplica una presión, pero una vez depositada sobre el lienzo se desea que no gotee.

Dentro de los principales tipos de fluidos no newtonianos se incluyen los siguientes:
Tipo de fluido
Comportamiento
Características
Ejemplos
Plásticos
Plástico perfecto
La aplicación de una deformación no conlleva un esfuerzo de resistencia en sentido contrario
Metales dúctiles una vez superado el límite elástico
Plástico de Bingham
Relación lineal, o no lineal en algunos casos, entre el esfuerzo cortante y el gradiente de deformación una vez se ha superado un determinado valor del esfuerzo cortante
Barro, algunos coloides
Limite seudoplastico
Fluidos que se comportan como seudoplásticos a partir de un determinado valor del esfuerzo cortante
Limite dilatante
Fluidos que se comportan como dilatantes a partir de un determinado valor del esfuerzo cortante
Fluidos que siguen la Ley de la Potencia
seudoplástico
La viscosidad aparente se reduce con el gradiente del esfuerzo cortante
Algunos coloides, arcilla, leche, gelatina, sangre.
Dilatante
La viscodidad aparente se incrementa con el gradiente del esfuerzo cortante
Soluciones concentradas de azúcar en agua, suspensiones de almidón de maíz o de arroz.
Fluidos Viscoelásticos
Material de Maxwell
Combinación lineal "serie" de efectos elásticos y viscosos
Metales, Materiales compuestos
Fluido Oldroyd-B
Combinación lineal de comportamiento como fludio Newtoniano y como material de Maxwel
Betún, Masa panadera, nailon, Plastilina
Material de Kelvin
Combinación lineal "paralela" de efectos elásticos y viscosos
Plástico
Estos materiales siempre vuelven a un estado de reposo predefinido
Fluidos cuya viscosidad depende del tiempo
Reopéctico
La viscosidad aparente se incrementa con la duración del esfuerzo aplicado
Algunos lubricantes
Tixotrópico
La viscosidad aparente decrece con la duración de esfuezo aplicado
Algunas variedades de mieles, kétchup, algunas pinturas antigoteo.