martes, 23 de noviembre de 2010

Química Industrial

Química Industrial es la rama de la química que aplica los conocimientos químicos a la producción de forma económica de materiales y productos químicos especiales con el mínimo impacto adverso sobre elmedio ambiente.Aunque tradicionalmente se adaptaba a escala industrial un proceso químico de laboratorio, actualmente se modelizan cuidadosamente los procesos según su escala. Así, se ponen en juego fenómenos como la transferencia de materia o calor, modelos de flujo o sistemas de control que se agrupan bajo el término de Ingeniería Química.Para la predicción de los efectos de los modelos de flujo de fluidos y calor, así como de la transferencia de cantidad de movimiento, y para la evaluación de efectos sólo abordables empíricamente, las plantas piloto a escala reducida son muy utilizadas, aprovechándose para el dimensionado definitivo y la selección de materiales y equipos.La adaptación del laboratorio a la fábrica es la base de la industria química, que suele reunir en un solo proceso continuo y estacionario (aunque también opera por cargas) las operaciones unitarias que en ellaboratorio se efectúan de forma independiente. Estas operaciones unitarias son las mismas sea cual sea la naturaleza específica del material que se procesa. Algunos ejemplos de estas operaciones unitarias son la molienda de las materias primas sólidas, el transporte de fluidos, la destilación de las mezclas de líquidos, la filtración, la sedimentación, la cristalización de los productos y la extracción de materiales de matrices complejas.La Química industrial está en continua evolución. Modernamente van perdiendo importancia los procesos de producción en gran cantidad y de escaso valor añadido, frente a los productos específicos de gran complejidad molecular y síntesis laboriosa. Por otro lado, al tradicional aprovechamiento de subproductos y energía por motivos económicos se ha añadido la preocupación por el medio ambiente y los procesos sostenibles (Green Chemistry)La metodología y la tecnología de la Química Industrial es la Ingeniería Química, la cual fue definida así por el Simposio Internacional sobre enseñanza de la Ingeniería Química,( Londres 1981)“La Ingeniería Química es una disciplina en la que cuatro procesos de transferencia de calor, transferencia de materia, transferencia de cantidad de movimiento y cambio químico (incluyendo el cambio bioquímico) se combinan con las ecuaciones fundamentales de conservación y leyes de la Termodinámica para aclarar los fenómenos que tienen lugar en los equipos y en las plantas de proceso”. En entidades como Ceateci ,en Lima Peru, la quimica industrial como pequeña empresa industrial tienen auge por la generación de autoempleo ( www.ceateci.net)

martes, 5 de octubre de 2010

SEDIMENTACION:

El proceso de sedimentación:
El proceso de sedimentación puede ser benéfico, cuando se piensa en el tratamiento del agua, o perjudicial, cuando se piensa en la reducción del volumen útil de los embalses, o en la reducción de la capacidad de un canal de riego o drenaje.
La sedimentación es un proceso que forma parte de la potabilización del agua y de la depuración de aguas residuales
Potabilización del agua.
En la potabilización del agua, el proceso de sedimentación está gobernado por la ley de , que indica que las partículas sedimentan más fácilmente cuando mayor es su diámetro, su peso específico comparado con el del líquido, y cuando menor es la viscosidad del mismo. Por ello, cuando se quiere favorecer la sedimentación se trata de aumentar el diámetro de las partículas, haciendo que se agreguen unas a otras, proceso denominado coagulación y floculación.
Tratamiento de las aguas residuales En el tratamiento de las aguas residuales, este proceso se realiza para retirar la materia sólida fina, orgánica o no, de las aguas residuales, aquí el agua pasa por un dispositivo de sedimentación donde se depositan los materiales para su posterior eliminación, el proceso de sedimentación puede reducir de un 20 a un 40% la DBO51 y de un 40 a un 60% los sólidos en suspensión.
diagrama deflujo:













Tipos de corrientes y sus propiedades:
Según el diagrama ahí una entrada de una mescla de un solido y un liquido. Y dos de salida en una sale el solido solo y en la otra sale el liquido solo.
Las entradas y salidas son constantes .para que se utiliza el método del separación:
¨La sedimentación es el asentamiento y remoción de partículas suspendidas que ocurre cuando el liquido se estanca, se detiene o fluye lentamente a través
¨De un estanque. Debido a la poca velocidad de flujo, por lo general no habrá turbulencia o será insignificante y se permitirá el asentamiento de partículas que tengan una densidad de masa (peso especifico) mayor que la del liquido. En ultima instancia estas partículas serán depositadas en el fondo del tanque formando una capa de lodo. El liquido q llegue al orificio de salida del tanque se presentara en condición clarificada.imagenes:












Ejemplos:
Un ejemplo de medio es un delta, cuando hay precipitaciones, el agua arrastra agua y se deposita en el delta con lo que hay un predominio de la sedimentación, cuando llega la primavera, es el período de estiaje y el caudal es mínimo, en los deltas no hay estabilidad. Por tormentas etc. el oleaje produce erosión.

miércoles, 8 de septiembre de 2010


Cristales metálicos
La estructura de los cristales metálicos es más simple porque cada punto reticular del cristal está ocupado por un átomo del mismo metal. Los cristales metálicos por lo regular tienen una estructura cúbica centrada en el cuerpo o en las caras; también pueden ser hexagonales de empaquetamiento compacto, por lo que suelen ser muy densos. Sus propiedades varían de acuerdo a la especie y van desde blandos a duros y de puntos de fusión bajos a altos, pero todos en general son buenos conductores de calor y electricidad.

Cristales moleculares
En un cristal molecular, los puntos reticulares están ocupados por moléculas que se mantienen unidas por fuerzas de van der Waals y/o de enlaces de hidrógeno. El dióxido de azufre (SO2) sólido es un ejemplo de un cristal molecular al igual que los cristales de I2, P4 y S8. Con excepción del hielo los cristales moleculares suelen empaquetarse tan juntos como su forma y tamaño lo permitan. Debido a que las fuerzas de van der Waals y los enlaces de hidrógeno son más débiles que los enlaces iónicos o covalentes, los cristales moleculares suelen ser quebradizos y su mayoría se funden a temperaturas menores de 100 °C.

Cristales covalentes
Los átomos de los cristales covalentes se mantienen unidos en una red tridimensional únicamente por enlaces covalentes. El grafito y el diamante, alótropos del carbono, son buenos ejemplos. Debido a sus enlaces covalentes fuertes en tres dimensiones, el diamante presenta una dureza particular y un elevado punto de fusión. El cuarzo (SiO2) es otro ejemplo de cristal covalente. La distribución de los átomos de silicio en el cuarzo es semejante a la del carbono en el diamante, pero en el cuarzo hay un átomo de oxígeno entre cada par de átomos de Si.

Cristales iónicos
Los cristales iónicos tienen dos características importantes: están formados de enlaces cargadas y los aniones y cationes suelen ser de distinto tamaño. son duros y a la vez quebradizos. la fuerza que los mantiene unidos es electrostatica Ejemplos: KCl, CsCl, ZnS y CF2. La mayoría de los cristales iónicos tiene puntos de ebullición altos, lo cual refleja la gran fuerza de cohesión que mantiene juntos a los iones. Su estabilidad depende en parte de su energía reticular; cuanto mayor sea esta energía, más estable será el compuesto. Como el cristal de un reloj

Cristales líquidos
Algunos líquidos anisótropos (ver anisotropía), denominados a veces "cristales líquidos", han de considerarse en realidad como cuerpos mesomorfos, es decir, estados de la materia intermedios entre el estado amorfo y el estado cristalino.

Los cristales líquidos se usan en pantallas (displays) de aparatos electrónicos. Su diseño mas corriente consta de dos láminas de vidrio metalizado que emparedan una fina película de sustancia mesomorfa. La aplicación de una tensión eléctrica a la película provoca una intensa turbulencia que comporta una difusión local de la luz, con la cual la zona cargada se vuelve opaca. Al desaparecer la excitación, el cristal líquido recupera su transparencia.